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Abstract
By analysing an effective Hamiltonian for spin polarons forming in weakly
doped antiferromagnets represented by the t–J model we demonstrate that the
driving mechanism which gives rise to superconductivity in such a system is
the lowering of the kinetic energy, which is consistent with recent experimental
observations. That source of attraction between holes is effective if the
antiferromagnetic correlation length is longer than the radius of polarons.
Notwithstanding that the attraction is strongest in the undoped system with long-
range order, the superconducting order parameter vanishes when the doping
parameter decreases, which can be attributed to emptying the spin polaron
band and approaching the Mott insulator phase. Since the hypothetical normal
phase of a low-density gas of fermions is unstable against formation of bound
hole pairs the intensity of low-energy excitations is suppressed and a pseudogap
forms in the underdoped region.

1. Introduction

The appearance of superconductivity (SC) with high Tc in doped antiferromagnetic (AF)
insulators is one of the most intriguing problems in modern condensed matter physics. Some
recent experimental observations shed new light on this problem. It has been observed [1]
that the spectral weight of the optical conductivity is shifted toward lower energies below Tc

and in the pseudogap region, which indicates that the lowering of the kinetic energy plays
an important role in pairing. In addition, some recent measurements of optical conductivity
in underdoped cuprates performed by Basov and collaborators [2] indicate that approaching
the insulator regime in this system may be attributed to localization effects in a band which
is emptied. A rigid band behaviour has also been recently observed by means of angle-
resolved photoemission spectroscopy (ARPES) measurements in Na-doped Ca2CuO2Cl2 by
Shen, Takagi and collaborators [3, 4]. We shall argue that these findings are consistent with
the spin polaron scenario for weakly doped AF.
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The task of formulating a universal model capable of describing simultaneously all
experimental aspects of different cuprates seems elusive. Nevertheless some general
understanding of SC in doped AF may be gained from analysis of a minimal model for such
systems; the t–J model (TJM). Recent numerical calculations based on a combination of
various techniques, like quantum Monte Carlo (QMC) and Lanczos algorithms, performed
for relatively large clusters have provided convincing evidence for pairing in the TJM [5, 6].
These calculations also indicate that short-range AF correlations are robust even for moderate
doping. Some time ago an effective model was suggested to discuss SC in the TJM [7].
According to that suggestion the driving attractive force between holes may be attributed
to the fact that by sharing a common link two holes minimize the the loss of the energy
related to breaking AF links. This effect was represented in that effective model by a
term corresponding to attraction between holes created at nearest neighbour (NN) sites.
According to a different point of view, pairing in doped AF is mediated by an exchange
of spin waves [8, 9]. In this paper we shall demonstrate that the main energetic gain in the
paired state is due to formation of spin bipolarons which move in a way that conserves the
kinetic energy.

Detailed knowledge about binding in weakly doped AF, about the role which symmetry
plays in this process and about the internal structure of the bound pair [10] indicates that
the static attraction between holes related to the minimization of the number of broken AF
bonds if a hole pair occupies NN sites is ineffective because in the interesting parameter region
t � J the kinetic energy of each hole is raised due to the presence of the second hole at an
NN site, which restricts the freedom of motion of holes. That insight gained by means of the
spin polaron (string) approach and based on an assumption that short-range AF correlations
prevail even for moderate doping has been verified by extensive comparisons with results
of numerical analyses including QMC [11], exact diagonalization (ED) [12, 13] and density
matrix renormalization group (DMRG) calculations [14]. A consistent picture which emerges
from the collection of different pieces of data is that competition between different phases like
the non-superconducting local pair phase, the SC state, phase separation or the stripe phase
is governed by an obvious tendency to lower simultaneously the kinetic and the magnetic
exchange energy.

In this paper, using knowledge gained about binding of holes in weakly doped AF [10],
we analyse the formation of the SC state in such a system in terms of an effective model,
which represents propagation and interaction of spin polarons. The basic assumption of
this approach is that the AF correlation length is longer than the radius of spin polarons
which seems to be valid at least in the region of weak doping. We will demonstrate that
the shape of the curve representing the superconducting order parameter as a function of
doping obtained in the numerical calculations [5] is reproduced within the Hartree–Fock (HF)
approximation to an effective Hamiltonian represented in the basis of spin polaron states, and
that the agreement for underdoped systems where the spin polaron approach should be valid
is better than qualitative.

The standard version of the TJM [15] on the square lattice is used in this paper, which
means that some possible effects related to the long-range Coulomb repulsion are not analysed
here

H = −t
∑

〈i, j〉,σ
(ĉ†

i,σ ĉ j,σ + H.c.) + J
∑
〈i, j〉

(
SiS j − ni n j

4

)
. (1)

The Si are electronic spin operators, ĉ†
i,σ = c†

i,σ (1 − ni,−σ ) and the sum over 〈i, j〉 stands for
a summation over all pairs of NNs.
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2. Localized spin polarons and bipolarons

In order to make this paper self-sufficient we now outline the construction of spin polarons
and the mechanisms of interaction between them. The spin polaron approach to binding of
holes in doped AF [16–18] is based on the notion of a string. A moving hole inserted into
the AF medium creates a line of defects (string) in the spin pattern, which raises the magnetic
potential-like contribution to the energy. Since the rate of processes related to hopping is
higher than the rate of magnetic exchange processes during which anti-parallel spins on NN
sites are turned upside down, the latter category of processes may be temporarily neglected in
the lowest-order approximation, when a trial ‘unperturbed’ Hamiltonian H0 is solved. That
Hamiltonian represents a hole attached to a site by a string, or in other words it describes a
particle in a potential well. The eigenstates of the trial Hamiltonian, which we call in our
terminology spin polarons span in principle the whole Hilbert space, but to discuss the low-
energy properties of the system it is sufficient to concentrate on the ground state, which may
be represented as

|�i〉 =
∑
Pi

αl(Pi )|Pi 〉. (2)

|Pi 〉 denotes a state obtained by hopping along a path Pi without retreats of a hole created at
the site i in the AF medium. For simplicity, we assume that the Néel state plays the role of
that medium and that amplitudes αl(Pi ) depend only on the length of paths l(Pi ). If more holes
are created at distant sites, the wavefunction of the multi-hole spin polaron representing many
holes in separate potential wells is just a product of the wavefunctions for single independent
polarons. If a hole pair is created at NN sites that approximation cannot be applied, because
the holes share the same region in which the spin arrangement has been disturbed. Due to
the size reduction of the disturbed area, the increase of the static potential contribution to the
energy related to the part of the Hamiltonian which is equivalent to the Ising model is reduced.
On the other hand, the proximity of holes may restrict their freedom of motion which raises
the kinetic energy. In order to analyse these effects quantitatively we define a localized spin
bipolaron as a combination of states which may be obtained by non-retraceable hopping of
holes created at a pair of NN sites i , j ,

|�i, j 〉 =
∑
Pi ,P j

αl(Pi ),l(P j )|Pi ,P j 〉. (3)

The amplitudes αl(Pi ),l(P j ) represent the ground state solution of an approximate Schrödinger
equation for an unperturbed Hamiltonian H0 which describes two particles in the same potential
well. The explicit form of the Schrödinger equations which determine αµ and αµ,ν will be
presented in the appendix. It is sufficient to say here that H0 couples string states of different
length, counts the increase in the energy related to the destruction of the local AF environment
and also takes into account the role of quantum spin fluctuations in the AF spin background,
but neglects differences between paths of different geometry. A general lesson which we learn
by comparing eigenenergies of localized single polarons and bipolarons is that the gain in the
energy related to the reduction of the number of broken bonds when holes occupy NN sites is
compensated by the loss of the kinetic energy which may be attributed to the fact that motion
of each hole toward its partner is prohibited in such a case.

3. Effective Hamiltonian

During the process of constructing spin polarons we have solved a trial unperturbed
Hamiltonian which is a part of the full TJM. We will take into account the remaining part
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of the TJM by analysing all processes which have been neglected at the earlier stage of the
calculation. These processes will be represented by a part of the Hamiltonian matrix which
couples spin polaron states. This way of thinking about the TJM is very convenient, because
eigenenergies of a spin polaron and a spin bipolaron already contain a substantial part of the
energy related to the fast incoherent motion of holes inside potential wells. The formulation
of the Hamiltonian in terms of the spin-polaron basis brings about some new features of
the formalism. Since spin bipolaron states are not orthogonal, the particle-number operator
contains two-body terms which consist of a pair of operators annihilating spin polarons and
a pair of operators creating spin polarons at pairs of NN sites. The appearance of such terms
may be understood by means of a simplest example depicted in figures 1(a)–(c). A wavy line
represents a frustrated link for which the static contribution to the exchange energy, which
is diagonal in the basis of spin up–down states, is raised in comparison with the Néel state.
Diagrams (a) and (c) represent two holes created in the AF (Néel) background on different
pairs of sites. These states are components of two different bipolarons |�i, j 〉 created at these
pairs of sites i, j . In both cases, by hopping outward from the accompanying hole, the hole at
the central site creates a state depicted in figure 1(b) which is simultaneously the component
of those two different bipolarons. Equivalence between components of bipolarons created at
different sites gives rise to the overlap between them. By further hopping the holes create more
equivalent states and the total overlap between bipolarons created on NN sites may be written
as a sum, − ∑

µ=0,ν=1(z − 1)µ+ν−1αµ,ναµ+1,ν−1, where z = 4 is the coordination number
and the minus sign is a matter of convention. Analogously, to each string state of arbitrary
length, which consists of aligned magnons (flipped spins) and holes at both end-points, may
be attributed overlap between bipolarons created at outer pairs of sites. In the language of the
second quantization the overlap between bipolarons may be represented in terms of a pair of
operators annihilating spin polarons and a pair creating them, as for example

δÔ = −
∑

µ=0,ν=1

(z − 1)µ+ν−1αµ,ναµ+1,ν−1

∑
i

h†
i+x̂

h†
i hi hi−x̂ (4)

in the previously discussed case, where Ô is an operator representing the overlap. It turns
out that each non-trivial contribution to the overlap operator brings about a new contribution
to the effective Hamiltonian. By applying the kinetic energy term to the state depicted in
figure 1(b), which is a component of the bipolaron created at a pair of sites represented by
circles in figure 1(a), the left hole may be shifted to the central site and a state represented by
figure 1(c) will be obtained, which means that spin polarons created at different pairs of sites
marked by circles in figures 1(a) and (c) are coupled by the Hamiltonian. That coupling was
neglected when we were solving the trial Hamiltonian because holes created at a pair of NN
sites were not allowed to retrace each other. Longer strings obtained by further hopping of the
right hole may also be involved in analogous processes. The contribution to the Hamiltonian is,

δ Ĥ = −t
∑
µ=1

(z − 1)µ−1α0,µα0,µ−1

∑
i

h†
i+x̂

h†
i hi hi−x̂. (5)

Longer strings are crucial to the effectiveness, in lowering the energy, of processes driven by
the kinetic term in the Hamiltonian. They have been neglected in previous analyses by different
authors which lead them to an incorrect conclusion that the collective motion of a hole pair
connected by a string cannot bring about pairing. We will discuss this issue later. At this stage
of our considerations it is necessary to mention that the contributions to the energy which
are brought about by the processes included in the trial Hamiltonian are incorporated into the
eigenenergies of the polaron E1 and the bipolaron E2 and appear in the effective Hamiltonian
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as diagonal terms

δ Ĥ = E1

∑
i

h†
i hi + (E2 − 2E1)

∑
i,δ

h†
i+δh†

i hi hi+δ. (6)

Since the absolute value of amplitudes αµ, αµ,ν declines, when the length of strings µ or
µ+ν grows only short string states may bring about considerable contributions to the effective
Hamiltonian. This remark concerns only the shortest strings which are involved in a process
of a given type, as in figures 1(a)–(c). As we have mentioned before, longer strings obtained
by further hopping of holes in the state presented in figure 1 (b) may also take part in an
analogous process. Since the number of such strings grows exponentially with the length,
their contributions should also be taken into account as we did in (4) and (5). On the other
hand, in this paper the analysis of processes is restricted to the shortest strings (of maximal
length two lattice spacings) which are involved in a given process and ‘initiate’ the whole family
of longer strings that may also take part in it. We apply an obvious defining convention that the
string length is equal to the number of magnons created by hopping holes, which means that
the maximal distance between holes connected by a string of length 2 is three lattice spacings.
Restricting our calculation to processes which involve strings with the minimal length no
longer than two lattice spacings needs some justification. By solving the Schrödinger equation
determining the shape of spin polarons we deduce that the weight of a string state of length 3
for J/t = 0.33 is already smaller at least by one order of magnitude than the weight of states
representing bare holes created in the Néel state and drops faster with increasing length. Thus,
we immediately realize that the weight of the shortest strings involved in a given process
basically determines the order of magnitude of its amplitude which may be also confirmed by
an explicit evaluation of formulae like the sums (4) and (5). In addition, results of experiments
with neutron scattering performed for La2−x Srx CuO4 [19] suggest that the AF correlation
length in the cuprates follows the mean hole distance, which allows us to make an estimate
that the spin polaron approach to pairing in weakly doped AF will provide reasonable results
for the doping parameter δ � 1/9 for which the AF correlation length is longer than the
average distance between the holes that form the spin bipolaron, which we estimate to be
about two to three distances between copper atoms. The applicability of the string approach
to the whole underdoped region, for example for the doping parameter up to the value 1/4
starts to be questionable because at that value the AF correlation length is surely no higher
than two distances between copper atoms. Provided that the AF correlation length is bigger
than the radius of spin polarons, the procedure of finding the effective Hamiltonian is well
controlled. The string approach is an expansion with the controlling parameter 1/z. Since
the total weight of all string states is unity, the weight of a process which involves strings of
length l is of order 1/zl and decreases fast with l. No double counting is possible because
contributions to the effective Hamiltonian are systematically found by analysing the matrix
elements between spin polaron wavefunctions and their components which are string states.
Since only spin polaron states with lowest eigenenergy are applied, the effective Hamiltonian
is defined in the low-energy shell.

While constructing the effective Hamiltonian we not only take into account processes
which were omitted when the trial Hamiltonian was solved, but also make some amendments
to approximations we made previously. Since the wavefunction of a spin multipolaron
representing holes created at a distance longer than one lattice spacing is approximated by the
product of wavefunctions, some corrections are necessary. By considering that kind of product
we tacitly assumed that such holes may jump on top of each other. Such artificial states should
be removed, which gives rise to a necessary correction in the normalization condition for pairs
of spin polarons located at a distance longer than one lattice spacing and an additional term in
the operator representing the overlap between pairs of polarons. Also an appropriate correction



2760 P Wróbel et al

(d)(c)

(g)(f)(e)

(i)

(b)(a)

(h)

(l)(k)(j)

Figure 1. Graphical representation of some states and processes.

(This figure is in colour only in the electronic version)

to the eigenenergies of single polarons should be made for polarons created at such a small
distance, because the obvious restriction on the possibility of hopping of holes on top of each
other was neglected when we solved the Schrödinger equation defining single polaron states,
which means that some spurious processes were taken into account during the evaluation of
the kinetic energy.

Different spin polaron states may also be coupled by terms in the TJM related to the
magnetic exchange. Their action, which occurs at a slower rate ∼J , turns anti-parallel spins
at NN sites upside down. That coupling was neglected when the spin polaron basis was
constructed. Figures 1(d)–(g) show a most obvious process, which gives rise to coherent
propagation of a single hole in the AF medium. The diagram (d) represents a hole created
in the AF spin background. This state is also a component of a spin polaron created at the
same site. Other components of that polaron which are depicted in diagrams (e) and (f) will
be obtained if the hole starts to hop. Two magnons created in this way may be annihilated if
the transverse part of the Heisenberg model is applied to the state represented by figure 1(f).
The new state, which is a component of the spin polaron localized at the site shifted by two
lattice spacings, is represented by the diagram in figure 1(g). In a similar way a spin bipolaron
may be shifted by one lattice spacing in the direction perpendicular to the bond occupied by
the bipolaron. If two defects created by independent hops in that direction of each hole from
the pair initially created at NN sites are removed by the transverse part of the exchange term,
the hole pair is effectively moved, which brings about the shift of the whole spin bipolaron.
The intermediate state has been depicted in figure 1(h). The initial and final position of the
spin bipolaron is the middle pair of sites in the lower and upper row respectively. Such a
process is of paramount importance for the selection of the symmetry of the bound state of two
holes created in an AF [10], because it lowers the energy of the dx2−y2 -wave state and raises
the energy of the p-wave state, while the remaining low-order processes which involve only
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spin bipolarons are neutral. We expect that the preference for the dx2−y2 -wave symmetry will
prevail in the hypothetical SC state, which may emerge after polaron pairs condense.

Some additional amendments to terms in the Hamiltonian which are diagonal in the spin-
polaron representation are necessary. For example, our analysis should also take into account
that holes initially created at sites which are not NN sites may gain some potential energy by
lowering the number of broken bonds when they occupy such a pair after they have made a
few hops. The discussion of quantum fluctuations in the AF state which lower the energy of
the ground state of the Heisenberg model in comparison with the energy of the Néel state, that
is the ground state of the Ising model, is also incorporated into our calculation. In the lowest
order of the perturbation theory such fluctuations represent pairs of magnons created at NN
sites in the Néel state and change the energy by the amount −J/12 for each link.

At the chosen level of accuracy there are altogether 14 different contributions to the overlap
operator and 58 to the Hamiltonian, which may be classified according to processes that give
rise to them and the positions of involved polarons. The physical picture which underlies the
principle according to which the Hamiltonian is constructed is based on the assumption that
the dynamics of holes should not destroy local AF correlations. For example in the process
depicted in figures 1(a)–(c) the defects in the spin structure created by the motion of the right
hole are annihilated by the subsequent hopping of the left hole. Thus, by the exchange of
magnons forming a string which connects two holes, hole pairs initially created at NN sites
avoid confinement. The process depicted in figures 1(d)–(g) which deconfines a single hole
may be interpreted as cutting of the string formed by magnons attached to the initial site, by
the transverse part of the exchange term in the Hamiltonian.

Due to space limitations we are not able to dwell upon further details and we now present
the form of the effective Hamiltonian expressed in terms of operators hi and h†

i annihilating
and creating spin polarons:

Ĥ − µN̂ = (E1 − µ)
∑

i

h†
i hi + h

∑
i,δ,δ′ ;δ′ �=−δ

h†
i+δ+δ′ hi + (E2/2 − E1 + u1)

∑
i,δ

h†
i h†

i+δhi+δhi

+ u2

∑
i,δ,δ′ ;δ′ �=−δ

h†
i h†

i+δ+δ′ hi+δ+δ′ hi + u3

∑
i,δ,δ′;δ′⊥δ

h†
i h†

i+δ+δ′ hi+δ+δ′ hi

+ u4

∑
i,δ,δ′ ,δ′′ ;δ′ �=−δ,δ′′ �=−δ′

h†
i h†

i+δ+δ′+δ′′ hi+δ+δ′+δ′′ hi + s1

∑
i,δ,δ′;δ′ �=−δ

h†
i+δ+δ′ h

†
i+δhi+δhi

+ s2

∑
i,δ,δ′,δ′′ ;δ′ �=−δ,δ′′ �=−δ′

h†
i+δ+δ′ h

†
i+δ+δ′+δ′′hi+δhi

+ s3

∑
i,δ,δ′ ;δ′⊥δ

[(h†
i h†

i+δ+δ′ hi+2δhi + H.c.) + h†
i h†

i+δ+δ′ hi+δ−δ′ hi ]

+ s4

∑
i,δ,δ′ ,δ′′ ;δ′ �=−δ,δ′′ �=−δ′

(h†
i h†

i+δ+δ′+δ′′hi+δhi + H.c.) + s5

∑
i,δ,δ′ ;δ′⊥δ

h†
i h†

i+δ′ hi+δhi

+ s6

∑
i,δ,δ′ ,δ′′ ;δ′ �=δ,δ′′ �=−δ

(h†
i+δ+δ′′ h

†
i+δ′ hi+δhi + H.c.) + s7

∑
i,δ,δ′;δ′⊥δ

h†
i+δ+δ′ h

†
i+δ′ hi+δhi .

(7)

Parameters which appear in this effective Hamiltonian are functions of E1, E2, µ, t , J and
amplitudes α and include at once contributions from many different types of process. An
important remark which we should also make is that the highest value for experimentally
relevant ratios J/t has a parameter related to the motion as a whole of strings connecting a
pair of holes, an example of which is depicted in figures 1(a)–(c). That type of caterpillar-
like motion is so effective in lowering the total energy because by expanding at one end and
shrinking at the other the whole string may move freely, while the number of magnetic defects
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is kept low. Only the kinetic term in the Hamiltonian is involved in that movement, and the
term related to the magnetic exchange does not have to intervene. Thus the gain in the energy
is mainly due to lowering of the kinetic energy.

It is widely believed [20–22] that the motion of the hole pair is frustrated and cannot
bring about lowering of the total energy and binding or pairing. Already the analysis of
hole binding [10] has provided arguments that such an opinion is not correct. The notion of
frustration was used in the literature to describe the fact that the effective hopping of the hole
pair occupying NN sites, to nearest links that are parallel and perpendicular to the link at the
ends of which the holes have been initially located, produces effective hopping integrals with
the same positive sign, which is not very convenient in terms of lowering the kinetic energy
but does not change a generally applicable rule that a mobile quantum object has lower energy
than an immobile one. We have previously shown that the motion of a hole pair connected
by a string formed by defects in the AF spin structure may give rise to formation of bound
states with dx2−y2 - and p-wave symmetries, which agrees with results of numerical analyses
including a recent work [13] performed for a relatively large cluster consisting of 32 sites. Also
the energetic hierarchy of two-hole states representing symmetries and wavevectors allowed by
the geometry of the 4×4 cluster observed by Hasegawa and Poilblanc [23] in the results of the
ED has been reproduced by means of the spin polaron approach. Since the interaction between
spin polarons mediated by the processes related to the motion of the string connecting two
holes is dominating, the agreement between numerical and analytical analyses indicates that the
spin polaron approach properly takes into account such effects. Arguments against the kinetic
energy driven mechanism of binding in doped AF are based on the large d expansion [22]. A
single hole created in the Néel background may lower the energy by virtual hopping to NN
sites. If two holes occupy NN sites, the hopping of each hole in one direction is blocked and the
energy is raised by the amount 2t2/Jd in comparison with the energy of two separated holes.
On the other hand if holes are created at NN sites one spoiled AF link is saved and a negative
contribution −J/2 to the total energy is generated. In the first order of the 1/d expansion,
the propagation of a hole pair occupying NN sites mediated by the process represented by
figures 1(a)–(c) may only compensate the loss in the energy related to the blocking effect
and no net gain in the energy related to the kinetics of the hole pair is observed. That picture
changes qualitatively in lower dimensions for t � J . The energy scale ∼t2/J (d −1) related to
kinetic processes dominates the scale ∼J (d − 1), which means that the energetic cost related
to the creation of longer strings similar to the state represented by figure 1(i) is relatively
lower. In addition, there is no blocking effect in the case of strings with at least one magnon.
In simple terms, holes at the ends of longer strings can hop at least once in all directions
without disturbing each other. All this makes the creep of strings more effective in lowering
the energy. It seems that any calculation based on the 1/d expansion or an approach limited to
a small basis of states related to short strings will not provide reliable results for a 2D system.
During the construction of the spin polaron and the bipolaron the important contribution to the
energy from incoherent motion in the potential wells and longer strings has also been taken
into account. The energy of the spin bipolaron by construction contains contributions related
to saving spoiled AF links and mutual restriction of the freedom of motion by two holes which
oscillate chaotically around a pair of NN sites where they have been initially created. It turns
out that for physically relevant range of parameters these two effects almost compensate each
other and the eigenenergy of the localized spin bipolaron is roughly twice the energy of a
localized polaron. Thus, truly kinetic effects related to motion of the centre of mass of a hole
pair connected by a string bring about a net gain in the kinetic and total energy. These effects
are represented in the effective Hamiltonian by terms related to the hopping of bipolarons.
The difference between the behaviour in low and high dimensions may be associated with the
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change in the relation between the energy scales J (d − 1) and t2/J (d − 1) which means that
the creation of longer strings is not so costly in lower dimensions and the system may lower
its energy by kinetic processes which involve longer strings.

The wavefunctions of spin polarons are not orthonormal and the operator Ô representing
overlap between them takes an unconventional form,

Ô = 1 + d1

∑
i,δ,δ′ ;δ′ �=−δ

h†
i h†

i+δ+δ′ hi+δ+δ′ hi + d2

∑
i,δ,δ′;δ′⊥δ

h†
i h†

i+δ+δ′ hi+δ+δ′ hi

+ o1

∑
i,δ,δ′;δ′ �=−δ

h†
i+δ+δ′ h

†
i+δhi+δhi + o2

∑
i,δ,δ′,δ′′ ;δ′ �=−δ,δ′′ �=−δ′

h†
i+δ+δ′ h

†
i+δ+δ′+δ′′ hi+δhi

+ o3

∑
i,δ,δ′;δ′⊥δ

[(h†
i h†

i+δ+δ′ hi+2δhi + H.c.) + h†
i h†

i+δ+δ′ hi+δ−δ′ hi ]. (8)

Since the explicit formulae for the parameters of the Hamiltonian and the overlap operator are
rather lengthy, they will be presented in the appendix.

4. Pairing versus the pseudogap phase in doped antiferromagnets

The distance between two holes which form a bound state in the AF background is a few lattice
spacings [10] and it is natural to analyse their paring in real space. That approach is suitable
for superconductors with a short coherence length. For the sake of simplicity we concentrate
on anomalous Green functions F(i, τ ; i ′, τ ′),

F(i, τ ; i ′, τ ′) = 〈Tτ hi (τ )hi ′(τ ′)〉, (9)

which represent a pair of spin polarons annihilated at a pair of sites i , i ′ located at a
distance no longer than three lattice spacings. The remaining anomalous Green functions
which correspond to longer distances are neglected. That simplification will be justified by
showing that F(i, τ ; i ′, τ ′) decreases rapidly with distance between i and i ′. Our intention
is to understand the results of the recent numerical calculation performed by Sorella and
collaborators [5] using numerical methods. Since they observe pairing correlations at some
pairs of nearby sites we may also define the order parameter in real space for a few
short distances. Possible symmetries of the order parameter are determined by irreducible
representations of the point group C4v. The order parameter, which is a singlet, may transform
according to one-dimensional representations s, dx2−y2 , dxy and g, while the triplet order
parameter corresponds to the two-dimensional representation p. It turns out that in a full
analysis of pairing in the real space at distances no longer than three lattice spacings, a
24-dimensional order parameter should be considered. Due to space limitations we omit a
full analysis of the interplay between different symmetries. Since attraction between holes is
strongest in the dx2−y2 -wave channel we shall discuss pairing only of that symmetry. If we
restrict pairing in the real space to distances up to three lattice spacings, the dx2−y2 symmetry
will generate three different harmonics in the order parameter. The need to apply a non-
monotonic order parameter was recently suggested after analysis of results of some experiments
with Raman scattering performed for electron-doped cuprates [24].

We assume that the anomalous Green function is translationally invariant in space and
time,

Fe(x, τ ) = 〈Tτ hi+x(τ ′ + τ )hi(τ
′)〉, (10)

and that i in the previous definition belongs to the even sublattice. A relevant order parameter
in the real space is defined as,

�x = Fe(x, 0+). (11)



2764 P Wróbel et al

By proceeding in a standard way we derive HF equations for the SC order parameter in which
vertex corrections have been neglected. Since retardation effects related to the exchange
of magnons have already been taken into account during the derivation of the effective
Hamiltonian, application of the weak coupling approach seems to be appropriate. The
difference between the grand canonical potential at T = 0 in the superconducting and the
normal state �s − �n may be reconstructed from the equations for the order parameter. The
inverse procedure is also possible:

�s − �n

N

∣∣∣∣
T =0

= 1

N

∑
k

|ξk| − εk

2
− {(4u1 + 8u4 − 4s1 + 4s2 − 16s4 − 8s5 + 16s6 + 8s7)

× �2
1,0 + 24u4�

2
2,1 + 4u4�

2
3,0 + (16s4 + 16s6)�1,0�2,1

+ (8s4 + 8s6)�1,0�3,0}, (12)

where ξk and εk are quasiparticle energies in the normal and superconducting state

ξk = E1 + h(S(2,0)
k + 2S(1,1)

k ) − µ; Ek =
√

ξ2
k + �2

k. (13)

The gap function is strongly anisotropic,

�k = d(1,0)
k �ex + d(2,1)

k �2ex +ey + d(3,0)
k �3ex ;

d(1,0)
k = (2u1 + 4u4 − 2s1 + 2s2 − 8s4 − 4s5 + 8s6 + 4s7)D(1,0)

k

+ (2s4 + 2s6)D(2,1)
k + (2s4 + 2s6)D(3,0)

k ;
d(2,1)

k = (4s4 + 4s6)D(1,0)
k + 6u4 D(2,1)

k ; d(3,0)
k = (2s4 + 2s6)D(1,0)

k + 2u4 D(3,0)
k ,

(14)

where

D(1,0)

k = 2 cos(kx) − 2 cos(ky);
D(2,1)

k = 2 cos(2kx + ky) + 2 cos(2kx − ky) − 2 cos(kx + 2ky) − 2 cos(kx − 2ky);
D(3,0)

k = 2 cos(3kx) − 2 cos(3ky); S(2,0)
k = 2 cos(2kx) + 2 cos(2ky);

S(1,1)
k = 2 cos(kx + ky) + 2 cos(kx − ky).

(15)

The chemical potential applied in this formalism refers to the number of holes N̂ which is
given by the formula N̂ = ∑

i h†
i hi + 2(Ô − 1), that within the HF approximation may be

written at T = 0 as

δ = 1

N

∑
k

(
1 − ξk

Ek

)/
2 − 8(o1 − o2)�

2
êx

, (16)

where δ = 〈N̂ 〉/N . In the following we will restrict our analysis to the case of T = 0. o1 − o2

turns out to be negative. Thus it is clear that equation (16) will enforce disappearance of the
SC order parameter when the number of holes decreases.

Figure 2 depicts anomalous Green functions that represent the SC order parameter related
to pairs of spin polarons condensing on some nearest pairs of sites in the real space obtained
within the weak coupling approximation applied to the effective Hamiltonian for J/t = 0.33.
Numerical analyses of the TJM indicate that the AF correlations decrease with doping and
that the correlation length becomes comparable to two or even one lattice spacing, when
the doping exceeds 20%, which agrees with the phenomenology of the cuprates. Since the
spin-polaron approach is based on the assumption that the polaron radius is smaller than the
correlation length, this method will not work for the values of the doping parameter δ � 0.2.
In addition, according to our previous estimates we may expect that the spin polaron method
should definitely provide reasonable results for doping levels δ below 1/9. The agreement
between our analytical approach and numerical results of Sorella and collaborators [5] turns
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Figure 2. Anomalous Green functions �x which represent pairs of spin polarons condensing at
the distance of one lattice spacing (continuous curve),

√
5 lattice spacings (dotted curve) and three

lattice spacings (dash–dotted curve).

out to be better than qualitative for the whole ‘underdoped’ region for which the results have
been presented in figure 2. Our calculation also demonstrates that the energetic gain is not
due to minimization of the number of broken bonds in the AF state if holes reside on a pair of
NN sites, but pairing actually occurs because by formation of spin bipolarons, the magnetic
and kinetic components of the energy may be simultaneously lowered. Since t � J , lowering
of the kinetic energy plays a leading role in pairing, which confirms recent experimental
observations [1] that the spectral weight in the plots of optical conductivity is shifted toward
lower energies below Tc and in the pseudogap region. We also observe that the SC order
parameter vanishes in the limit of low hole doping, which may be attributed to emptying
the spin polaron band and approaching the Mott insulator (MI) phase in the nominally half-
filled system. A rigid band picture which may be associated with propagating spin polarons
has recently been observed by means of ARPES measurements in Na-doped Ca2CuO2Cl2 by
Shen, Takagi and collaborators [3, 4]. The only effect which has doping up to a level above
10% is the shift of the chemical potential.

The vanishing of the SC energy gap related to the coherent SC state does not necessarily
mean that the underdoped AF should reveal features of an ordinary Fermi liquid-like normal
state, because the system of freely propagating spin polarons becomes unstable against
formation of bipolarons which brings about opening of the a pseudogap in the spectral function
of a single quasiparticle. An earlier analysis [17] together with results presented in this paper
and some numerical calculations [12, 13] demonstrate that the binding energy of a hole pair in
the AF medium, which according to our scenario should be the energy scale of the pseudogap
near half-filling, is a bigger fraction of J than the SC energy gap at optimal doping, which is in
rough agreement with the phenomenology of the cuprates. Localization effects which should
accompany a transition to MI in the limit of low doping and the intrinsic disorder [25] which
is a characteristic feature of the cuprates may complicate the physical picture of the relation
between the superconducting state and the pseudogap phase.

5. Conclusions

The analysis presented in this paper allows us to identify spin fluctuations which mediate
pairing. It turns out that the coherent propagation of magnons which takes the form of spin
waves is not relevant to pairing. A process which gives rise to magnon propagation has been
depicted in figures 1(j)–(l). Figure 1(j) represents an isolated magnon. By swapping two spins
the transverse part of the exchange interaction may create a state with three magnons which
form a line as in figure 1(k). The magnon will be effectively shifted by two lattice spacings if
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two left defects in the AF spin background are removed by the XY term in the Hamiltonian.
The position change of the magnon between configurations depicted in figures 1(j) and (l)
gives rise to the coherent propagation of the spin wave. It turns out that inclusion of such
processes in our considerations does not influence the results, which proves that the standard
propagation of spin waves does not play a crucial role in pairing. Emission of spin fluctuation
by a hopping hole, which are later annihilated by the second hole that retraces the path of the
first hole has a quite different nature and is a dominating factor in pairing.

The form of the effective Hamiltonian (7) indicates that the pairing mechanism is
essentially non-retarded and effective interactions have a short range which agrees with
conclusions drawn from the universal trends observed for the cuprates in the dependence
of Tc on the hole and condensate density [26, 27].

The disappearance of SC in the underdoped region with decreasing number of holes should
not be attributed to vanishing of the attractive force between quasiparticles but to emptying the
spin polaron band. The later effect does not influence binding of hole pairs which gives rise
to pseudogap phenomena. That rough scenario will in reality be modified by dimensionality
effects, disorder, phase fluctuations, and some other phenomena like the tendency toward phase
separation and stripe formation. A more detailed analysis of these effects is beyond the scope
of this paper.

The Bardeen–Cooper–Schrieffer (BCS) mean-field type analysis employed in this paper
needs some further improvements, due to short coherence length effects. This remark mainly
concerns finite temperatures, where pairing correlation and fluctuation effects, processes
related to formation of strongly coupled pairs and their condensation at lower temperatures are
important. A full analysis of the transition and phenomena at finite temperatures requires a
more involved method suitable for low density systems, which is the T matrix approach [28–
33]. On the other hand, the detailed analysis is restricted in this paper to the case T = 0
where, as has been shown by many authors [29, 34–36], the BCS approach is expected to give
rise to at least qualitatively correct results. This statement is true even in the case of strong
coupling and for the scenario of condensing preformed pairs. Some more subtle effects, like
the evolution of collective modes in the superconducting ground state, may be easily described
in terms of the random phase approach which is a natural extension of the BCS method [37].

A phenomenological scenario in which SC is mediated by lowering of the kinetic energy
has been suggested by Hirsch [38], who coined the notion of hole undressing, which may
also be applied to the spin bag scenario. The kinetic mechanism of SC was also discussed by
Imada and co-workers [39]. In both cases the standard Hubbard or TJMs were supplemented
by additional terms which give rise to kinetic pairing. Our calculation demonstrates that such
an effect may be observed in the original non-extended TJM.

In summary, by constructing an effective Hamiltonian we have identified spin fluctuations
which mediate pairing in doped AF as local spin fluctuations which lie on a path connecting two
holes. Creep-like motion of the whole object is an effective way of lowering the kinetic energy
and the predominant factor which gives rise to pairing. This contradicts previous statements
and widespread opinions, based on the 1/d expansion, that the collective motion of two holes
in the locally AF background cannot effectively lower the energy. Experimental evidence that
pairing may be associated with the change in the kinetic energy has recently been found by a
second group [40]. These researchers were actually looking for the transfer of spectral weight
from lower to higher energies in the pseudogap region, but observed an opposite behaviour,
which supports the suggestion that the physics of the pseudogap may be also related to binding
of holes.

A more detailed analysis, which is beyond the scope of this paper indicates that in the
superconducting state both the hopping energy and the exchange energy defined at the level
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of the TJM are lowered. Such behaviour has already been observed in the two-hole bound
state [14], but this observation seems to contradict the virial theorem. The virial theorem
which relates the mean values of the kinetic energy and the potential energy has a simple form
if the energy of interaction of particles is a homogeneous function of a given degree n in their
coordinates, which is not necessarily the case for low-energy effective models like the TJM.
It may be shown that after a unitary transformation, the Coulomb potential energy defined
at the level of the Hubbard model is represented at the level of the TJM by the exchange
energy with a negative sign [41], and this quantity indeed increases in the SC state. The
hopping term in the Hubbard model is represented in the TJM by the constrained hopping
term plus twice the exchange energy. Thus, a relation which resembles the virial theorem for
particles interacting by Coulomb law indeed holds for the Hubbard model in the large U limit,
but not for the TJM. We also notice that the definition of the kinetic energy depends on the
model which is applied. The total kinetic energy defined at the level of the full Hamiltonian
derived from first principles does not have much experimental significance because it is not
measurable. For effective models in which electrons may only hop to NN sites, the optical
integral is proportional with the overall minus sign to the kinetic energy [42]. If the upper limit
in the integral of the optical conductivity over the frequency is set below the charge excitation
energy U , that integral measures the hopping energy in the lower Hubbard band, or in other
words the kinetic energy defined at the level of TJM. Lowering of such a quantity is reported
in some experimental papers [1, 40] and this meaning of the notion of kinetic energy, which
has experimental significance, is applied in this paper.

The analysis of the effective Hamiltonian obtained by means of a method which has both
a variational and perturbative character reproduces better than qualitatively the behaviour of
the SC order parameter obtained by means of the numerical analysis [5] in the region where
δ < 0.2, which exceeds our expectations that the spin polaron method should be valid for
δ � 0.11. On the other hand the solution of the gap equation turns out to very sensitive to
changes of the parameters defining the Hamiltonian. Since the effective Hamiltonian has been
obtained by means of some approximations we can hardly expect quantitative accuracy of our
results.

Some recent experimental results obtained by measuring optical conductivity [2] and
ARPES [3] confirm the relevance of the band scenario at low doping, which is consistent with
the spin polaron approach.

The strength of the attraction mediated by spin fluctuations decreases with increasing
doping and diminishing AF correlation length. That effect may explain decreasing of the
pseudogap with doping and the disappearance of SC in the overdoped region. On the other
hand in the underdoped region SC disappears, because the quasiparticle band is emptied, while
the density of low-energy excitations is still suppressed by formation of bound hole pairs.
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Appendix

We start the appendix with the presentation of parameters which define the Hamiltonian and
the overlap operator in terms of operators creating and annihilating spin polarons:
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h = 2M{(2,0)}{(0,0)}; u1 = J H{
(0,0)

(1,0)

}{
(0,0)

(1,0)

} − J H{
(0,0)

(3,0)

}{
(0,0)

(3,0)

};
u2 = (E1 − µ)P{

(0,0)

(2,0)

}{
(0,0)

(2,0)

}
} + P H{

(0,0)

(2,0)

}{
(0,0)

(2,0)

}/2 + J H{
(0,0)

(2,0)

}{
(0,0)

(2,0)

};
u3 = (E1 − µ)R{

(0,0)

(1,1)

}{
(0,0)

(1,1)

} + RH{
(0,0)

(1,1)

}{
(0,0)

(1,1)

}; u4 = J H{
(0,0)

(3,0)

}{
(0,0)

(3,0)

}/2;
s1 = (E2 − 2µ)C{

(2,0)

(1,0)

}{
(0,0)

(1,0)

} − 2M{(2,0)}{(0,0)} + C H{
(2,0)

(1,0)

}{
(0,0)

(1,0)

};
s2 = (E2 − 2µ)C{

(2,0)

(3,0)

}{
(0,0)

(1,0)

} + C H{
(2,0)

(3,0)

}{
(0,0)

(1,0)

};
s3 = (2E1 − 2µ − J/2)S{

(0,0)

(1,1)

}{
(0,0)

(2,0)

} + SH{
(0,0)

(1,1)

}{
(0,0)

(2,0)

}; (A.1)

s4 = M{
(0,0)
(3,0)

}{
(0,0)
(1,0)

} + M{
(0,0)
(1,0)

}{
(0,0)
(3,0)

} − 2M{(2,0)}{(0,0)};
s5 = 2M{

(0,0)

(0,1)

}{
(0,0)

(1,0)

} − 2M{
(0,0)

(3,0)

}{
(0,0)

(1,0)

} − 2M{
(0,0)

(1,0)

}{
(0,0)

(3,0)

} + 2M{(2,0)}{(0,0)};
s6 = M{

(2,0)

(−1,0)

}{
(0,0)

(1,0)

}/2; s7 = 2M{
(1,1)

(0,1)

}{
(0,0)

(1,0)

} − M{
(2,0)

(−1,0)

}{
(0,0)

(1,0)

} − (J/2)C{
(2,0)

(3,0)

}{
(0,0)

(1,0)

};
d1 = P{

(0,0)

(2,0)

}{
(0,0)

(2,0)

}/2; d2 = R{
(0,0)

(1,1)

}{
(0,0)

(1,1)

}/2;
o1 = C{

(2,0)
(1,0)

}{
(0,0)
(1,0)

}; o2 = C{
(2,0)
(3,0)

}{
(0,0)
(1,0)

}; o3 = S{
(0,0)
(1,1)

}{
(0,0)
(2,0)

}.

Parameters which are presented below correspond to different categories of processes which
involve string states.

P{
(0,0)
(2,0)

}{
(0,0)
(2,0)

} = −
[

2
∑

µ=2,ν=0

(z − 1)µ+ν−2α2
µα2

ν +
∑

µ=1,ν=1

(z − 1)µ+ν−2α2
µα2

ν

]
;

C{
(2,0)

(1,0)

}{
(0,0)

(1,0)

} = −
∑

µ=0,ν=1

(z − 1)µ+ν−1αµ,ναµ+1,ν−1;

C{
(2,0)

(3,0)

}{
(0,0)

(1,0)

} =
∑

µ=0,ν=2

(z − 1)µ+ν−2αµ,ναµ+2,ν−2;

S{
(0,0)

(1,1)

}{
(0,0)

(2,0)

} = −
∑

µ=2,ν=0

(z − 1)µ+ν−2αµαναµ−2αν+2;

R{
(0,0)

(1,1)

}{
(0,0)

(1,1)

} = −
[
α2

1 + (z − 2)
∑
µ=2

(z − 1)µ−2α2
µ

]2

;

M{(2,0)}{(0,0)} = (J/2)
∑
µ=2

(z − 1)µ−2αµαµ−2;

M{
(0,0)
(3,0)

}{
(0,0)
(1,0)

} = (J/2)
∑

µ=0,ν=2

(z − 1)µ+ν−2αµ,ναµαν−2;

M{
(0,0)
(1,0)

}{
(0,0)
(3,0)

} = (J/2)
∑

µ=2,ν=0

[δµ,2(z − 1)ν + (1 − δµ,2)(z − 2)(z − 1)µ+ν−3]αµαναµ−2,ν;

M{
(0,0)

(0,1)

}{
(0,0)

(1,0)

} = (J/2)
∑

µ=2,ν=0

[δµ,2 + (1 − δµ,2)(z − 2)(z − 1)µ−3]

× [δν,0 + (1 − δν,0)(z − 2)(z − 1)ν−1]αµ,ναµ−2,ν; (A.2)

M{
(2,0)

(−1,0)

}{
(0,0)
(1,0)

} = (−J/2)
∑

µ=1,ν=1

(z − 1)µ+ν−2αµ,ναµ−1αν−1;

M{
(1,1)

(0,1)

}{
(0,0)

(1,0)

} = (−J/2)
∑

µ=1,ν=1

[δµ,1 + (1 − δµ,1)(z − 2)(z − 1)µ−2]
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× [δν,1 + (1 − δν,1)(z − 2)(z − 1)ν−2]αµ,ναµ−1,ν−1;
C H{

(2,0)

(1,0)

}{
(0,0)

(1,0)

} = −t
∑
µ=1

(z − 1)µ−1α0,µα0,µ−1;

C H{
(2,0)

(3,0)

}{
(0,0)

(1,0)

} = t
∑
µ=2

(z − 1)µ−2α0,µα1,µ−2; P H{
(0,0)

(2,0)

}{
(0,0)

(2,0)

} = −2t (α2
0α1α2 + α0α

3
1);

SH{
(0,0)

(1,1)

}{
(0,0)

(2,0)

} = −t
∑
µ=2

αµα0αµ−2α1; RH{
(0,0)

(1,1)

}{
(0,0)

(1,1)

} = −t
∑
µ=1

α1α
2
µα0;

J H{
(0,0)

(1,0)

}{
(0,0)

(1,0)

} = (−J/2)

[
2

∑
µ=2,ν=0

(z − 1)µ+ν−2α2
µ,ν +

∑
µ=1,ν=1

(z − 1)µ+ν−2α2
µ,ν

]
;

J H{
(0,0)

(3,0)

}{
(0,0)

(3,0)

} = (−J/2)

[
2

∑
µ=2,ν=0

(z − 1)µ+ν−2(αµαν)
2 +

∑
µ=1,ν=1

(z − 1)µ+ν−2(αµαν)
2

]
;

J H{
(0,0)

(2,0)

}{
(0,0)

(2,0)

} = (−J/2)
∑

µ=1,ν=0

[δµ,1 + (1 − δµ,1)(z − 2)(z − 1)µ−2]

× [δν,0 + (1 − δν,0)(z − 2)(z − 1)ν−1](αµαν)
2.

Spin polarons are defined as a solution of the following eigenvalue problem

ztα1 + 2Jα0 = E1α0; tαµ−1 + (z − 1)tαµ+1 + J ( 5
2 + µ)αµ = E1αµ,

where µ � 1. A solution of the following Schrödinger equation for two particles in the same
potential well determines the wavefunction of the spin bipolaron,

t[αµ−1,ν + (z − 1)αµ+1,ν + αµ,ν−1 + (z − 1)αµ,ν+1] + J (4 + µ + ν − 1
2 δµ+ν,0)αµ,ν = E2αµ,ν,

(A.3)

where αµ,ν = 0 for µ < 0 or ν < 0. The normalization conditions for spin-polaron
wavefunctions are

α2
0 + z

∑
µ=1

(z − 1)(µ−1)α2
µ = 1;

∑
µ=0,ν=0

(z − 1)(µ+ν)α2
µ,ν = 1. (A.4)
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